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Last Time

• Machine Learning
• Predicting a Variable
• Error evaluation
• Model comparison
• Fitness of models



Today

• Linear models 
• Estimate of the regression coefficients
• Model evaluation 
• Interpretation



Linear Models
Note that in building our kNN model for prediction, we did not 
compute a closed form for !𝑓. 

What if we ask the question: 

“how much more sales do we expect if we double the TV advertising budget?” 

Alternatively, we can build a model by first assuming a simple form of 𝑓: 

𝑓 𝑥 = 𝛽! + 𝛽"𝑋

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Linear Regression

… then it follows that our estimate is:

where !𝛽! and !𝛽" are estimates of 𝛽! and 𝛽" respectively, that we compute using 
observations.

bY = bf(X) = c�1X +c�0



Estimate of the regression coefficients
For a given data set

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Estimate of the regression coefficients 
(cont)

Is this line good?

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Estimate of the regression coefficients 
(cont) 

Maybe this one?

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Estimate of the regression coefficients 
(cont) 

Or this one?

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Estimate of the regression coefficients (cont) 
Question: Which line is the best? 
For each observation (𝑥#, 𝑦#), the absolute residual is calculating the residuals 
𝑟$ = |𝑦$−-𝑦$|. 

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Loss Function: Aggregate Residuals

How do we aggregate residuals across the entire dataset?

1. Max Absolute Error
2. Mean Absolute Error
3. Mean Squared Error

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Estimate of the regression coefficients 
(cont) 

• Again we use MSE as our loss function, 

• We choose !𝛽!and !𝛽" in order to minimize the predictive errors made by our 
model, i.e. minimize our loss function.

• Then the optimal values for !𝛽" and !𝛽! should be:

L(�0,�1) =
1

n

nX

i=1

(yi � byi)2 =
1

n

nX

i=1

[yi � (�1X + �0)]
2 .

b�0, b�1 = argmin
�0,�1

L(�0,�1).
WE CALL THIS FITTING 

OR TRAINING THE 
MODEL



Optimization
How does one minimize a loss function?

The global minima or maxima of 𝐿 𝛽", 𝛽!  
must occur at a point where the gradient  
(slope)

∇𝐿 = %&
%'!

, %&%'" =0

• Brute Force: Try every combination

• Exact: Solve the above equation

• Greedy Algorithm: Gradient Descent
 

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Optimization: Estimate of the regression 
coefficients

Brute force

• A way to estimate argmin!!,!" 𝐿 is to calculate the loss function for every possible 𝛽# and 𝛽$. 
Then select the  𝛽# and 𝛽$ where the loss function is minimum. 

• E.g. the loss function for different 𝛽$ when 𝛽# is fixed to be 6:

Very computationally 
expensive with many 
coefficients

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Gradient Descent
• When we can’t analytically solve for the stationary points of the gradient, we can still 

exploit the information in the gradient. 
• The gradient ∇𝐿 at any point is the direction of the steepest increase. The negative gradient 

is the direction of steepest decrease. 
• By following the –ve gradient, we can eventually find the lowest point. 
• This method is called Gradient Descent.

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Take the gradient of the loss function and find the values of #𝛽! and #𝛽" where the 
gradient is zero: ∇𝐿 = %&

%'!
, %&%'" =0

This does not usually yield to a close form solution. However, for linear regression this 
procedure gives us 
explicit formulae for #𝛽! and #𝛽":

where &𝑦 and �̅�	are sample means. 
The line: 

is called the regression line.

Estimate of the regression coefficients: 
analytical solution 

�̂0 = ȳ � �̂1x̄

�̂1 =

P
i(xi � x)(yi � y)P

i(xi � x)2

bY = b�1X + b�0



Evaluation: Training Error  
Just because we found the model that minimizes the squared error it doesn’t 
mean that it’s a good model. We investigate the R2 but also: 

The MSE is high due to noise in the 
data.

The MSE is high in all four models but 
the models are not equal.

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Evaluation: Test Error

We need to evaluate the fitted model on new data, data that the model did not 
train on, the test data.

The training MSE here 
is 2.0 where the test 
MSE is 12.3. 

The training data 
contains a strange point 
– an outlier – which 
confuses the model. 

Fitting to meaningless patterns in the training is called overfitting.
This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Evaluation: Model Interpretation 
For linear models it’s important to interpret the parameters 

The MSE of this model is very small. But the slope 
is -0.05. That means the larger the budget the less 
the sales.

The MSE is very small but the intercept is -0.5 which 
means that for very small budget we will have 
negative sales.

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Break

CHILL WALK COFFEE OR TEA MAKE FRIENDS

Icons by Iconathon on The Noun Project

http://iconathon.org/
https://thenounproject.com/


Multiple Linear Regression 

If you must guess someone's height, would you rather be told
• Their weight, only
• Their weight and gender
• Their weight, gender, and income
• Their weight, gender, income, and favorite number

Of course, you'd always want as much data about a person as possible. Even 
though height and favorite number may not be strongly related, at worst you could 
just ignore the information on favorite number. We want our models to be able to 
take in lots of data as they make their predictions.



Response vs. Predictor Variables

TV radio newspaper sales

230.1 37.8 69.2 22.1

44.5 39.3 45.1 10.4

17.2 45.9 69.3 9.3

151.5 41.3 58.5 18.5

180.8 10.8 58.4 12.9

Y
outcome

response variable
dependent variable

X
predictors

features
covariates

p predictors

n 
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bs
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s

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Multilinear Models
In practice, it is unlikely that any response variable Y depends solely on one predictor x. Rather, we 
expect that is a function of multiple predictors 𝑓(𝑋$, … , 𝑋%). Using the notation we introduced last 
lecture, 

𝑌 = 𝑦$, … , 𝑦&,            𝑋 = 𝑋$, … , 𝑋% and         𝑋' = 𝑥$', … , 𝑥(', … , 𝑥&',

•

we can still assume a simple form for 𝑓	-a multilinear 
form:

𝑓 𝑋!, … , 𝑋" = 𝛽# + 𝛽!𝑋! +⋯+ 𝛽"𝑋"

Hence, 4𝑓, has the form:

0𝑓 𝑋!, … , 𝑋" = 0𝛽# + 0𝛽!𝑋! +⋯+ 0𝛽"𝑋"

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Multilinear Model, example 

For our data
𝑆𝑎𝑙𝑒𝑠 = 𝛽" + 𝛽! × 𝑇𝑉 + 𝛽1×𝑅𝑎𝑑𝑖𝑜 + 𝛽2×𝑁𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟



Interpreting multi-linear regression
For linear models, it is easy to interpret the model parameters.

When we have many predictors: 𝑋$, … , 𝑋%, there 
will be many model parameters, 𝛽$, 𝛽), … , 𝛽%. 
  
Looking at the values of 𝛽’s is impractical, so we 
visualize these values in a feature importance 
graph.

The feature importance graph shows which 
predictors has the most impact on the model’s 
prediction.

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Qualitative Predictors
So far, we have assumed that all variables are quantitative. But in practice, often 
some predictors are qualitative. 
Example:  The credit data set contains information about balance, age, cards, 
education, income, limit , and rating for several potential customers.

Income Limit Rating Cards Age Education Gender Student Married Ethnicity Balance

14.890 3606 283 2 34 11 Male No Yes Caucasian 333

106.02 6645 483 3 82 15 Female Yes Yes Asian 903

104.59 7075 514 4 71 11 Male No No Asian 580

148.92 9504 681 3 36 11 Female No No Asian 964

55.882 4897 357 2 68 16 Male No Yes Caucasian 331

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Qualitative Predictors

• If the predictor takes only two values, then we create an indicator or dummy
variable that takes on two possible numerical values.
• For example, for the gender, we create a new variable:

• We then use this variable as a predictor in the regression equation. 

xi =

⇢
1 if i th person is female
0 if i th person is male

yi = �0 + �1xi + ✏i =

⇢
�0 + �1 + ✏i if i th person is female
�0 + ✏i if i th person is male



Qualitative Predictors
Question: What is interpretation of 𝛽" and 𝛽!? 



Qualitative Predictors
Question: What is interpretation of 𝛽" and 𝛽!? 

• 𝛽" is the average credit card balance among males, 

• 𝛽" + 𝛽! is the average credit card balance among females, 

• and 𝛽! the average difference in credit card balance between females and 
males.

Example: Calculate 𝛽" and 𝛽! for the Credit data. 
You should find 𝛽"~$509, 𝛽!~$19



More than two levels: One hot encoding
• Often, the qualitative predictor takes more than two values (e.g. ethnicity in the credit 

data, or truly representing gender). 

• In this situation, a single dummy variable cannot represent all possible values. 

• We create additional dummy variable as:  

xi,2 =

⇢
1 if i th person is Caucasian
0 if i th person is not Caucasian

xi,1 =

⇢
1 if i th person is Asian
0 if i th person is not Asian



More than two levels: One hot encoding

We then use these variables as predictors, the regression equation becomes:

Question: What is the interpretation of 𝛽", 𝛽!, 𝛽1?  

yi = �0 + �1xi,1 + �2xi,2 + ✏i =

8
<

:

�0 + �1 + ✏i if i th person is Asian
�0 + �2 + ✏i if i th person is Caucasian
�0 + ✏i if i th person is AfricanAmerican



Collinearity
Collinearity and multicollinearity refers to the case in which two or more predictors are correlated 
(related). 

The regression coefficients are not uniquely 
determined. In turn it hurts the 
interpretability of the model as then the 
regression coefficients are not unique and 
have influences from other features.  

Both limit and rating have positive coefficients, but 
it is hard to understand if the balance is higher 
because of the rating or is it because of the limit? If 
we remove limit then we achieve almost the same 
model performance but the coefficients change. 

Limit and Rating are 
highly correlated

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Beyond linearity

So far we assumed:

• linear relationship between X and Y
• the residuals 𝑟$ = 𝑦$ − -𝑦$ were uncorrelated (taking the average of the square 

residuals to calculate the MSE implicitly assumed uncorrelated residuals). 

These assumptions need to be verified using the data and visually inspecting the 
residuals. 



Residual Analysis

If the correct model is not linear then, 

𝑦 = 𝛽" + 𝛽!𝑥 + 𝝓 𝒙 + 𝜖

our model assuming linear relationship is: 

-𝑦 = !𝛽" + !𝛽!𝑥

Then the residuals, 𝑟 = 𝑦 − -𝑦 = 𝜖 + 𝝓 𝒙 , are not independent of 𝒙



Residual Analysis

In residual analysis, we typically create two types of plots:

1. a plot of 𝑟$ with respect to 𝑥$ or -𝑦$. This allows us to compare the distribution 
of the noise at different values of 𝑥$ or -𝑦$. 

2. a histogram of 𝑟$. This allows us to explore the distribution of the noise 
independent of 𝑥$ or -𝑦$.



Residual Analysis 

Linear assumption is correct. There is no 
obvious relationship between residuals and 
x.  Histogram of residuals is symmetric and 
normally distributed. 

Linear assumption is incorrect. There is an 
obvious relationship between residuals and 
x.  Histogram of residuals is symmetric but 
not normally distributed. 

Note: For multi-regression, we plot the residuals vs predicted values, 3𝑦,  since there are too many x’s 
and that could wash out the relationship. 

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Beyond linearity: synergy effect or
interaction effect 

• We also assume that the average effect on sales of a one-unit increase in TV is 
always 𝛽! regardless of the amount spent on radio.

• Synergy effect or interaction effect states that when an increase on the radio 
budget affects the effectiveness of the TV spending on sales. 
We change

𝑌 = 𝛽" + 𝛽!𝑋! + 𝛽1𝑋1 + 𝜖
to:

𝑌 = 𝛽" + 𝛽!𝑋! + 𝛽1𝑋1 + 𝛽2𝑋!𝑋1 + 𝜖



What does it mean?

𝑥56789#6 = L
0 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽" + 𝛽!×𝐼𝑛𝑐𝑜𝑚𝑒.	
1 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽" + 𝛽1 + 𝛽! ×𝐼𝑛𝑐𝑜𝑚𝑒.	

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


What does it mean?

𝑥56789#6 = L
0 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽" + 𝛽!×𝐼𝑛𝑐𝑜𝑚𝑒.	
1 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽" + 𝛽1 + 𝛽! ×𝐼𝑛𝑐𝑜𝑚𝑒.	

𝑥56789#6 = L
0 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽" + 𝛽!×𝐼𝑛𝑐𝑜𝑚𝑒.	
1 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 𝛽" + 𝛽1 + 𝛽! + 𝛽2 ×𝐼𝑛𝑐𝑜𝑚𝑒



Too many predictors, collinearity and too many 
interaction terms leads to OVERFITTING!



Cartoon on data points & regression analysis involving drug trials, December 13, 2012. (http://www.landers.co.uk).

http://www.landers.co.uk/


Polynomial Regression



Fitting non-linear data
Multi-linear models can fit large datasets with many predictors. But the 
relationship between predictor and target isn’t always linear. 

We want a model: 
𝑦 = 𝑓6 𝑥

Where 𝑓is a non-linear 
function and 𝛽 is a vector 
of the parameters of 𝑓. 

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


Polynomial Regression

The simplest non-linear model we can consider, for a response Y and a predictor X, 
is a polynomial model of degree M,

𝑦 = 𝛽" + 𝛽!𝑥 + 𝛽1𝑥1 +⋯+ 𝛽:𝑥:

Just as in the case of linear regression with cross terms, polynomial regression is a 
special case of linear regression - we treat each 𝑥; as a separate predictor. Thus, 
we can write

𝑦 = 𝛽" + 𝛽!𝑥1 + 𝛽1𝑥2 +⋯+ 𝛽:𝑥𝑀

This looks a lot like multi-linear regression where the predictors are powers of x! 



Model Training

Give a dataset 𝑥$, 𝑦$ , 𝑥), 𝑦) , … , 𝑥&, 𝑦& , we find the optimal polynomial model: 

𝑦 = 𝛽# + 𝛽$𝑥 + 𝛽)𝑥) +⋯+ 𝛽*𝑥*

We transform the data by adding new predictors: 
9𝑥 = [1, 9𝑥$, 9𝑥), … , 9𝑥*]

where 9𝑥+ = 𝑥+

Fit the parameters by minimizing the MSE using vector calculus. As in multi-linear regression:

𝑦 = 𝛽# + 𝛽$ 9𝑥$ + 𝛽) 9𝑥) +⋯+ 𝛽* 9𝑥*



Polynomial Regression (cont)
Fitting a polynomial model requires choosing a degree.

Underfitting: when the degree is too 
low, the model cannot fit the trend.

We want a model that fits the trend 
and ignores the noise.

Overfitting: when the degree is too 
high, the model fits all the noisy 
data points. 

Degree 1 Degree 2 Degree 50

This example and all material are provided by the Data Science course at Harvard University

https://harvard-iacs.github.io/2020-CS109A


High degree of polynomial  
leads to OVERFITTING!



Feature Scaling
Do we need to scale out features for polynomial regression? 

Linear regression, 𝑌 = 𝑋𝛽, is invariant under scaling. If 𝑋 is called by some number 𝜆 then 𝛽 will 
be scaled by  $, and MSE will be identical. 

However, if the range of 𝑋 is low or large then we run into troubles. Consider a polynomial degree 
of 20 and the maximum or minimum value of any predictor is large or small. Those numbers to 
the 20th power will be problematic. 

• It is always a good idea to scale 𝑋 when considering polynomial regression: 

𝑋&-./ =
𝑋 − ?𝑋
𝜎0

Note: sklearn’s StandardScaler() can do this. 



Recapitulation

• Consider collinearity

• Consider interaction effects

• Consider residual analysis

• Too many predictors, collinearity and too many interaction 
terms leads to OVERFITTING!

• High degree of polynomial leads to OVERFITTING!



For next class..

Finish Labs to practice 
programming 

Complete Homework for 
more practice

Check Assignment 
contents and due date

See “To do before class” 
for next lecture (~ 1 hour 

of self-study)


