## Spatial Data Science Networks

## \& Space

(EPA 122A)
Lecture 7


Trivik Verma

## Last Time

- Geo-Visualisation
- Dangers of Geo-Vis
- Mapping Data
- MAUP
- Choropleths


## Today

- Introduction to Networks
- The need to represent space formally
- Spatial weights matrices
- What
- Why
- Types
- The spatial lag


## Why are we studying Networks?

## Wide Range of Applications

- Operations research: urban traffic, airport configuration, assembly lines ...
- Physical systems / processes: PV array, battery, hydraulics, aerodynamics ...
- Others: crowd behavior, family formation, wildfire spread, disease spread ...


## Introduction to Networks

- Pattern of relationships/connections among a set of "components"
- Growing public fascination with connectedness of modern society
- Early days : Euler's 1735 solution of the Königsberg bridge problem


Can you cross each bridge exactly once in a walk?

Can you cross each bridge exactly once in a walk?


## Introduction to Networks

- Pattern of relationships/connections among a set of "components"
- Growing public fascination with connectedness of modern society
- Early days : Euler's 1735 solution of the Königsberg bridge problem


> Can you cross each bridge exactly once in a walk?

- Complex system modelled as a mathematical network (graph)
- Level of abstraction to understand systems (powerful across disciplines)


## History of Networks

- Network-based analysis has a long-standing history
- Study of Königsberg bridges (Euler, 1736)
- Laws of electrical circuitry (Kirchoff, 1845)
- Molecular structure in chemistry (Cayley, 1874)
- Power grids (1910), telecommunications and the Internet (1960)
- Complex power grids (Me, 2012)


## History of Networks (Examples)

- Network-based analysis has a long-standing history
- A multi-model simulation of river flooding in Northern India



## History of Networks (Examples)

- Network-based analysis has a long-standing history
- No Simulation, but Network helps to understand the structure of a city
- Benefits of simulating traffic data on this network?
- Outer Residential
- Mixed Commuter
- Inner Residential
- Potential Feeder / Activity
- Polycentre
- CBD



## History of Networks (Examples)

- Network-based analysis has a long-standing history
- Criticality of elements in a network changes depending on the underlying measure, or the underlying values behind the measure



## History of Networks

- Network-based analysis has a long-standing history
- Study of Königsberg bridges (Euler, 1736)
- Laws of electrical circuitry (Kirchoff, 1845)
- Molecular structure in chemistry (Cayley, 1874)
- Power grids (1910), telecommunications and the Internet (1960)
- Interest exploded in the last two decades
- Systems thinking in science
- Data and Computation
- Social and Physical Globalisation


## Why are we studying Networks?

Usual trade-off between losing details in an idealized representation while gaining insights into the simplified problem

- Simple representations of complex systems in society
- Derive properties mathematically, computationally and analytically (systems thinking)
- Prediction of properties and outcomes
- Understanding common features of different networks


## Introduction to Networks

## Application Examples (Urban Data Science)

Routes and driving time

- Which is the fastest way to ...?

Accessibility of objects

- Which facility is closest?

Vehicle-routing-problems

- Which sequence of stops is most effective?

Accessibility of Zones

- What is the accessible area in a given time?



## Introduction to Networks

## Application Examples

Routes and driving time

- Which is the fastest way to ...?

Accessibility of objects

- Which facility is closest?

Vehicle-routing-problems

- Which sequence of stops is most effective?

Accessibility of Zones


- What is the accessible area in a given time?


## Introduction to Networks

## Application Examples

Routes and driving time

- Which is the fastest way to ...?


## Accessibility of objects

- Which facility is closest?

Vehicle-routing-problems

- Which sequence of stops is most effective?

Accessibility of Zones

- What is the accessible area in a given time?



## Introduction to Networks

## Application Examples

Routes and driving time

- Which is the fastest way to ...?

Accessibility of objects

- Which facility is closest?


## Vehicle-routing-problems

- Which sequence of stops is most effective?

Accessibility of Zones

- What is the accessible area in a given time?



## Introduction to Networks

## Application Examples

Routes and driving time

- Which is the fastest way to ...?

Accessibility of objects

- Which facility is closest?

Vehicle-routing-problems

- Which sequence of stops is most effective?


## Accessibility of Zones

- What is the accessible area in a given time?



## Overview of Networks

What is a network?

- Definitions
- Elements, representation
- Types of graphs
- Structural properties (not part of this course)


## Definitions

- Network:
"A geometric-topological arrangement of nodes and edges,
e.g. in the form of a graph [...]"


## Definitions

- Network:
"A geometric-topological arrangement of nodes and edges,
e.g. in the form of a graph [...]"
- Network analysis:
"A basic group of analysis functions [...] based on line-like phenomena to calculate and determine relations [...].


## Definitions

- Network:
"A geometric-topological arrangement of nodes and edges,
e.g. in the form of a graph [...]"
- Network analysis:
"A basic group of analysis functions [...] based on line-like phenomena to calculate and determine relations [...].

This includes

- shortest path analysis,
- searching for the nearest neighbour or the best location,
- calculating a minimum spanning tree or
- the solution of the travelling salesman problem.


## Definitions

- Network:
"A geometric-topological arrangement of nodes and edges,
e.g. in the form of a graph [...]"
- Network analysis:
"A basic group of analysis functions [...] based on line-like
phenomena to calculate and determine relations [...].
This includes
- shortest path analysis,
- searching for the nearest neighbour or the best location,
- calculating a minimum spanning tree or
- the solution of the travelling salesman problem.

Important for this group of analysis function is the correct representation of topological relations because mathematical methods of topology and graph theory are used."

## Definitions

## "Topological characteristics

... describe the relative spatial relations between objects [...]. Typical topological relations are related to adjacencies, (e.g. if two areas are adjacent), containedness (e.g. if a house is located on a certain spatial unit) or the intersection (e.g. if two roads cross)."

It's about mutual positions and arrangement of geometrical objects in space .. not about metrical relations.

## Definitions

## "Topological characteristics ...



# What is a network? 

Elements/representation

- Vertex, edge
- Adjacency matrix


## Types

- Weighted vs. unweighted
- Directed vs. undirected
- Connected vs. disconnected
- Cyclic vs. acyclic
- Complete, tree, cubic, star


## Elements/representation

Graph $G=(\mathrm{V}, \mathrm{E})$
$\mathrm{V}=$ vertices (singular vertex)
E = edges


## Elements/representation

Vertex V, edge E


> Vertex, Node, Point

## Elements/representation

Vertex V, edge E


## Elements/representation

Vertex V, edge E


## Elements/representation

Graph $=$ independent from its visualisation


## Elements/representation

Adjacency matrix


|  | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A |  |  |  |  |  |
| B |  |  |  |  |  |
| C |  |  |  |  |  |
| D |  |  |  |  |  |
| E |  |  |  |  |  |

## Elements/representation

Adjacency matrix


|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{A}$ | 0 | 1 | 0 | 0 | 0 |
| $\mathbf{B}$ | 1 | 0 | 1 | 0 | 0 |
| $\mathbf{C}$ | 0 | 1 | 0 | 1 | 1 |
| $\mathbf{D}$ | 0 | 0 | 1 | 0 | 1 |
| $\mathbf{E}$ | 0 | 0 | 1 | 1 | 0 |

## Elements/representation

Degree of a vertex:
$=$ the number of edges
connecting to a vertex


Adjacency matrix

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{A}$ | 0 | 1 | 0 | 0 | 0 |
| $\mathbf{B}$ | 1 | 0 | 1 | 0 | 0 |
| $\mathbf{C}$ | 0 | 1 | 0 | 1 | 1 |
| $\mathbf{D}$ | 0 | 0 | 1 | 0 | 1 |
| $\mathbf{E}$ | 0 | 0 | 1 | 1 | 0 |

## Elements/representation

Degree of a vertex:
$=$ the number of edges
connecting to a vertex


Adjacency matrix

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{A}$ | 0 | 1 | 0 | 0 | 0 |
| $\mathbf{B}$ | 1 | 0 | 1 | 0 | 0 |
| $\mathbf{C}$ | 0 | 1 | 0 | 1 | 1 |
| $\mathbf{D}$ | 0 | 0 | 1 | 0 | 1 |
| $\mathbf{E}$ | 0 | 0 | 1 | 1 | 0 |

3

## Cost/Weight of Links

Weighted Degree of a node:
$=$ the weighted sum of links connecting to a node


Adjacency matrix

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{A}$ | 0 | 3 | 0 | 0 | 0 |
| $\mathbf{B}$ | 3 | 0 | 1 | 0 | 0 |
| $\mathbf{C}$ | 0 | 1 | 0 | 2 | 3 |
| D | 0 | 0 | 2 | 0 | 5 |
| E | 0 | 0 | 3 | 5 | 0 |

# What is a network? 

Elements/Representation

- Vertex, Edge
- Adjacency matrix


## Types

- Weighted vs. unweighted
- Directed vs. undirected
- Connected vs. disconnected
- Cyclic vs. acyclic
- Complete, tree, cubic, star


## Types of graphs

unweighted graph

vs. weighted graph


## Types of graphs

undirected graph

vs. directed graph (digraph)


## Types of graphs

connected graph
vs. disconnected graph


## Types of graphs



## Types of graphs



## Types of graphs

complete graph



## Types of graphs

cubic graph
star graph
degree $=3$


## Break



CHILL


WALK


COFFEE OR TEA


MAKE FRIENDS

## Finding the shortest path

## General problem

- How do you find the shortest path between two or more points?
- Dijkstra-Algorithm (most common approach)

Edsger Wybe Dijkstra (1930-2002)

## Model

- Road map is a weighted network
- Nodes = cities/towns/regions/locations on a map
- Links = road segments/bridges/paths
- Weights = distance/time/money

© 2016 Wikipedia (H. Richards)


## Applications

- Navigation Systems, Route-Planning-Software
- Central role in every network analysis tool


## Physical Distances

Distance computation via Euclidean Distance


Euclidean Distance

$$
\begin{aligned}
& d=\sqrt{a^{2}+b^{2}}=\sqrt{1^{2}+3^{2}} \\
& =\sqrt{10} \\
& =3.16
\end{aligned}
$$


https://en.wikipedia.org/wiki/Pythagoras

## Physical Distances

Distance computation via Manhattan Distance

## 1.0



Manhattan Distance
4 neighbour



## Physical Distances



Manhattan Distance
4 neighbour


Euclidean Distance

$$
\begin{aligned}
& d=\sqrt{a^{2}+b^{2}}=\sqrt{1^{2}+3^{2}} \\
& =\sqrt{10} \\
& =3.16
\end{aligned}
$$



Finding the shortest path
(b)

What is the shortest path from (a) to (b)

Finding the shortest path


What is the shortest path from (a) to (b)

Finding the shortest path


What is the shortest path from (a) to (b)
(1) Taking the route from node (a) $\rightarrow$ (b) will cost us 5
(2) Taking the route from $(\mathrm{a}) \rightarrow(\mathrm{c} \rightarrow$ (b)

$$
2+1=1
$$

$\square$

Space, formally
Space, formally



Space, formally
Space, formally
Space, formally
$\qquad$ Space, formally
$\qquad$
$\qquad$


Space, formally
Space, formally
tuDefte
$\square$
$\square$
$\square$
Space, formally
Space, formally
Space, formally
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


Space, formally
Space, formally
Space, formally
Space, formally
Space, formally




For a statistical method to be explicitly spatial, it needs to contain some representation of the geography, or spatial context

One of the most common ways is through Spatial Weights Matrices

- (Geo)Visualization: translating numbers into a (visual) language that the human brain "speaks better"
- Spatial Weights Matrices: translating geography into a (numerical) language that a computer "speaks better".

Core element in several spatial analysis techniques:

- Spatial autocorrelation
- Spatial clustering / geodemographics
- Spatial regression


# $W$ as a formal representation of Space 

## W

$N \times N$ positive matrix that contains spatial relations between all the observations in the sample

$$
w_{i j}=\left\{\begin{array}{rc}
x>0, & \text { if } i \text { and } j \text { are neighbours } \\
0, & \text { otherwise }
\end{array}\right.
$$

$w_{i i}=0$ by convention
...What is a neighbour???

## Types of $W$

A neighbour is "somebody" who is

- Next door $\rightarrow$ Contiguity-based Ws
- Close $\rightarrow$ Distance-based Ws
- In the same "place" as us $\rightarrow$ Block weights


## Contiguity-based weights

Sharing boundaries to any extent

- Rook


Queen

- Queen
- 

..

## TUDelft



正





## Distance-based weights

Weight is (inversely) proportional to distance
between observations

- Inverse distance (threshold)



## TuDelft



Neighbors within 1 km of 'E01006690'


## Block weights

Weights are assigned based on discretionary rules loosely related to geography

For example:

- Buurts into Wijks
- Post-codes within city boundaries
- Counties within states


## How much of a neighbour?

Not a neighbour? receive zero weight: $w_{i j}=0$
Neighbours, it depends, $w_{i j}$ can be:

- One: $w_{i j}=1 \rightarrow$ Binary
- Some proportion ( $0<w_{i j}<1$, continuous) which can be a function of:
- Distance
- Strength of interaction (e.g., commuting flows, trade, etc.)


## Choice of $W$

Should be based on and reflect the underlying channels of interaction for the question at hand.

Examples:

- Processes propagated by immediate contact (e.g.
disease contagion) $\rightarrow$ Contiguity weights
- Accessibility $\rightarrow$ Distance weights
- Effects of county differences in laws $\rightarrow$ Block weights


## Standardisation

In some applications (e.g. spatial autocorrelation) it is common to standardize W

The most widely used standardization is row-based: divide every element by the sum of the row:

$$
w_{i j}^{\prime}=\frac{w_{i j}}{w_{i}}
$$

where $w_{i}$ is the sum of a row

Spatial Lag

## \section*{}

nation Tr os
Spatial Lag
Spatial Lag
Spatial Lag
2




## *

$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


-
$\qquad$
$\qquad$

$\qquad$

T
$\square$
$\qquad$
$\qquad$

## -

$\square$
$\qquad$








## Spatial Lag

Weighted average of neighbouring values

- Neighbour definition comes from spatial weights $w_{i j}$

$$
Y_{i L}=w_{i 1} Y_{1}+w_{i 2} Y_{2}+w_{i 3} Y_{3}+\ldots w_{i n} Y_{n}
$$

Spatial Lag variable has a smaller variance than $Y$ because it is a smoother function

## Spatial Lag

- Measure that captures the behaviour of a variable in the neighborhood of a given observation i.
- If W is standardized, the spatial lag is the weighted average value of the variable in the neighborhood (good for comparison and scaling)


## Spatial Lag

- Common way to introduce space formally in a statistical framework
- Heavily used in both ESDA and spatial regression to delineate neighborhoods.
- Examples (covered in next lecture):
- Moran's I
- LISAs
- Spatial models (lag, error...)


## Recapitulation

- Everything is connected and must be considered so
- Spatial Weights matrices: matrix encapsulation of space
- Different types for different cases (contiguous, distance and blocks)
- Useful in many contexts, like the spatial lag and Moran plot, but also many other things!


## For next class..



Finish Labs to practice programming


Complete Homework for more practice

Check Assignment contents and due date


See "To do before class" for next lecture ( $\sim 1$ hour of self-study)

