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Abstract

In European cities upto 91% of greenhouse gas emissions are caused by car traffic

(Rivas et al., 2020). These emissions could be lowered by offering alternative modes of

transport, such as walking or public transport.

A study in China found a significant correlation between traffic flow and the built envir-

onment based on detector data and the presence of alternative travel modes expressed as

Points of Interest. However the results could not be generalised to European cities.

Therefore this study focused on researching this correlation in five European cities. The

following research question is formulated: What is the correlation between measured traffic

flows and the amount of POI’s related to alternative forms of transport within 250m? This

question was answered through a LISA and regression analysis.

For this analysis traffic flows measured by detectors in Frankfurt, Hamburg, Munich,

Rotterdam & Zurich are used. The number of POI’s, representing alternative transport,

within 250 meters of these detectors are counted. The POI’s are defined as: stations,

footways, pedestrian area’s and cycleways. With these POI’s the flow was predicted using

an OLS regression model. The model found that only pedestrian areas had a significant

negative effect on traffic flow. The other POI’s had no significant relation with the traffic

flows. Furthermore, a strong spatial correlation was found, indicating that roads around

the detectors are a good predictor of local flow.

The model correlation indicates that more walk-able areas, which exist of many ped-

estrian areas, have lower traffic flows. The correlation for cycleways and public transport

stations were not significant. The findings are that in order to reduce traffic flows and

emissions, the walk-ability of an area, by creating pedestrian areas, has to be improved.
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1 Introduction

• Faster forms of personal transport brought societies much economic growth (BANISTER2001209).

However, this also came at a cost. In Europe, 40% of all CO2 emissions and 70% of all

other pollutants, are the direct cause of road transport (EC, 2020).

• A recent study found that these values were even higher within city centres in Europe,

with traffic emissions contributing up to 91% of total emissions (Rivas et al., 2020). There

is consensus that the earth is warming-up due to greenhouse gas emissions (Cook et al.,

2016). Next to that, air quality is currently one of the biggest health risks in Europe

(Marinov et al., 2016). Sustainable mobility is therefore increasingly important in cities.

• The presence of more high quality bicycle lanes, footpaths and public transport ac-

cess points, could help to make these forms of transport more attractive (Parker et al.,

2013;Murray et al., 1998). This could also potentially lead to distance reduction, by

constructing more direct travel routes.

• Wang et al., 2018 researched the correlation between traffic flow and the built environment

based on detector data and Points Of Interest (POI’s) for a big city in China. Among

the chosen POI’s were factors related to public transport access, but not to the walking

or cycling infrastructure. Correlations were found, but they stressed that those findings

were perhaps only valid in this specific case. They concluded that it would be interesting

to access how universal their findings were, by conducting a similar analysis for European

cities.

• Based on the earlier mentioned research(Parker et al., 2013;Murray et al., 1998;Banister,

2011) four relevant POI’s related to walking, cycling and public transport infrastructures

were selected. Those POI’s are: public transport stations, foot ways, pedestrian

area’s and cycle ways. POI’s within a radius of 250 meters around a measured flow

are assumed to be of influence, based on research mentioned in 2.

• To address the knowledge gap (Wang et al., 2018) formulated, this study will try to

determine how POI’s the traffic flow on roads in European cities. Insight in this situation

could help to identify the most efficient investments to increase the amount of sustainable

transport. To asses this, following research question is formulated: What is the correlation
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between measured traffic flows and the amount of POI’s related to alternative forms of

transport within 250m?

• The data-analyses will be performed using python, the POI’s will be taken from the

PYROSM package and street networks from the OSMNX package. The traffic flows were

obtained from the Multi-city Traffic dataset as constructed by (Loder et al., 2019). More

over, environmental data about the cities was obtained form the Urban Typologies Project

(Oke et al., 2019).

• Five cities of which both data sets contained information were selected to be included in

this research. These are the following cities: Frankfurt, Hamburg, Munich, Rotter-

dam and Zurich.
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2 Related work

• The World Business Council for Sustainability defined ”sustainable mobility” (WBCSD,

2001) as “the ability to meet the needs of society to move freely, gain access, communicate,

trade, and establish relationships without sacrificing other essential human or ecological

values today or in the future.”

• A study conducted by Banister, 2005 concluded using empirical methods, that one of the

key parameters of the sustainable city are that it should have a population over 25000

(preferably over 50000), with medium densities (over 40 persons per hectare). In those

cities it should be possible to keep the average trip lengths beneath the threshold required

for people to walk or cycle. (Borrego et al., 2006) found that compared to disperse and

network cities, compact cities with mixed land use provide better urban air quality.

• Banister, 2011 identified four ways for cities to become more sustainable, of which two are

directly linked to the built environment. The first of those focuses on reducing the levels

of car use through the promotion of cycling and walking and developing a new transport

hierarchy. To achieve this, policy aimed at slowing down urban traffic, parking controls,

road pricing, making it easier to use public transport and by reallocating space to public

transport is suggested. The second is centered at land use planning measures to achieve

distance reduction. This can be achieved by increasing densities and concentrations. This

is especially useful for newly built neighbourhoods, whereas the turnover of the building

stock is relatively low.

• Walk-ability in the context of sustainable transportation in cities, can be defined as the

degree to which walking and cycling are promoted by the community design as an altern-

ative for car usage to reach to reach shopping, schools, and other common destinations

(Forsyth, 2015). (Ewing and Handy, 2009) identified specific characteristics that can im-

prove the walk-ability of a city. Among those characteristics were physical features like

the proportion of historic buildings, the amount of parks and the noise level.

• Another important factor, is the the distance people are prepared to travel by foot.

American studies found that a distance of 400 meters or less, is a distance that Americans

rather walk than drive (Yang and Diez-Roux, 2012). (Garcıa-Palomares et al., 2013) found

that passengers in Madrid walked around 400 meters on average to reach public transport
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as well. The walking distance will always be higher than the distance as the crow flies.

Therefore POI’s within a range of 250 meters are considered to have a potential effect on

the traffic flow in this study.
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3 Exploratory Data-analysis

• For this research four data sets/sources are used.

1. UTD19 Data set

• This a large data set that is published by the, ETH Zürich. The data spans 40 cities

worldwide.

• In this research we’ll analyse the data from the following cities, Frankfurt, Hamburg,

Munich, Rotterdam and Zurich. An exploratory data analysis is carried out.

• From this data set we gathered the information about the detectors. This is, to be specific,

the detector ID, the detector coordinates and the flow per detector. The flow is measured

in vehicles per lane per hour. Other variables are the day of of the measurement, the time

from midnight from the measurement, the latitude and longitude of the detector and the

city the detector is located in.

• The UTD19 data set was used because it is a free open data source that is scientifically

valid.

2.Urban Typologies project

• The second dataset is the Urban typologies project. From this dataset the sustainability

score and CO2 emissions per city were retrieved.

3.OSMnx & OpenStreetMap

• OSMnx is a python package that allows the user to download spatial geometries and visu-

alize and analyze real world open street networks. These spatial geometries are retrieved

from OpenStreetMap. The street networks and the roads within are coupled with the

UTD19 dataset.

• With OpenStreetMap the user can select an area of choice and export this as as a data

set with spatial geometries. Then, using OSMnx, the data can be analyzed and visualized

in python.
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• The area to import and analyse were selected by creating a bounding box between the

four values of the minimum and maximum of the latitude & longtitude points of the

detectors.

4.PYROSM & OpenStreetMap

• PYROSM is a free open source python package that allows for importing openstreet map

data. In this case it is used to import the relevant POI’s and retrieve their geometries.

• PYROSM was used because of it’s good performance in retrieving POI’s

• OSMOSIS was used to get the city maps for specific bounding boxes for PYROSM.

3.1 Inspecting UTD19

• When looking at figure 1, a boxplot with flow per city can be seen. There seem to be a high

amount of outliers for high flows. This is likely because of rush hours or other peak times.

This means that the mean is skewed upwards. However, it is decided that these values

are kept in the dataset, to also account for peak times. And because alternative transport

options are perhaps during rushhour even more important, as the road is congested.
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Figure 1: Boxplot: Flow per city

• When looking at figure 2, we can see the total counts of POI’s and how these POI’s are

distributed for each of the cities. Also the types of POI’s are reflected.

• It is remarkable that while Munich is bigger than Zurich, Zurich has more POI’s registered.

• Rotterdam seems to have more cycle ways relative to the size of the city. The cycle way

count fall into the same magnitude of size as Munich, however in total Munich has about

three times as much POI’s.
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# of days # of detectors

Mean flow
(# of vehicles
per hour
per lane)

Frankfurt 1 112 233
Hamburg 108 418 143
Munich 1 520 225
Rotterdam 6 259 260
Zurich 7 1020 207

Table 1: Table with overview of raw data per city

Figure 2: Stacked bar plot with POIs
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3.2 Data Interrogation

3.2.1 UTD19

• UTD19 is a dataset with measurements of traffic flows in a variety of cities. Two elements

of the UTD-dataseed needed to be combined, one dataset has detector data (such as id,

longitude, latitude, roadnames, etc.). The other dataset has measured flow and ids, to

link it. Only data for the selected cities were used.

• Some cities have sparser data than others, for example Munich has a single day of detector

data while other cities have years. Therefore for each individual detector the mean of the

measured flows have been calculated. This number is expressed in cars/hour.

3.2.2 OSMnx & OpenStreetMap

• From OpenStreetMap we gained the streetnetworks of the cities. These were read in and

converted to machine readable graphs using OSMnx.

• An important step is to link detector data with roads in the street network. In each city

the coordinates of the detectors were associated with the closets edge (or road) in the

street network. A visualisation is given in figure 3. This algorithm (associating points

with edges) worked better than matching on street names, as now multiple detectors

could be associated with one road.

• When roads in the network are associated with detectors it is possible to assign flows to

these roads. These flow measurements are derived from the UTD19 data set.
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Figure 3: Example of matching detectors in Frankfurt (points in blue) with the as-
socated edge, also colored red

3.2.3 PYROSM & OpenStreetMap

• from OpenStreetMap the POI’s were imported for each of the cities. These were read in

and prepared for analysis using the PYROSM package.

• Again in the PYROSM datastructure each POI has a geometry. To express POI’s in

points the centroids of their geometries were taken. These points were combined with

the earlier mentioned detectors and street networks into a single dataframe containing all

information necessary for the analysis. A visualisation example of Frankfurt is given in

figure 4.
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Figure 4: Frankfurt’s street network, with the relevant POI’s plotted as points, the
flows in the street network are also visulised.
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3.3 Analysis of data

3.3.1 Setting up the analysis

• As mentioned in sections 3.2.1 & 3.2.2. The detector data has coordinates, the measured

flows in detectors were coupled with a street in the OSMnx street network. This creates

a dataframe with measured flows and roads.

• To include spatial effects, see section 4.1 for the spatial analysis, that the detectors have

on each other the distance bound spatial weights were calculated. The range threshold

is set at 250 meters. Thus, if two roads lie within this distance of each other they are

neighbours.

• In the same dataframe the POI’s retrieved from PYROSM are appended. Again the

distance bound spatial weights are calculated with a threshold of 250 meters. Now if

looking at a single road the neighbours is a list of both POI’s and other detectors. The

total count of POI neighbours is calculated for each road, and the count per type of POI.

• Aggregating these results a dataset with information about all of the detectors is retrieved.

An example of the dataframe is shown in figure 5.

Figure 5: Example of the cleaned and aggregated dataset

3.3.2 Exploring the variables

• To test the hypothesis the flow will be the dependent variable. Initially the predicting

variables are the counts of POI neighbours per type. These counts are reflected in the

following variables : stations, cycleways, footways, pedestrians and foot-way platforms.
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• Below, in figure 6 a pair-plot for all the variables considered in the analysis is presented.

The hue, or color of the points represent the city out for that specific point. For each

individual city a linear regression fit is represented with a line (in the color of the city).

Figure 6: Pairplot, shwoing distributions and relations of the inupt variables for re-
gression

• In figure 6 the diagonal axis shows a kernel density estimation plot for each of the city.

14



This gives insight regarding the distribution of these variables across cities. For example,

Hamburg seems to have the highest flows for the the detectors. Similarily Rotterdam has

a high density of foot-ways.

• In the top row of figure 6 the y-axis represents the traffic flows and in each plot the

x-axis is a different variable. Most trends seem to be going down, which is inline with the

hypothesis.

• In the rows below, correlation with flow and the multicollinearity of the predicting vari-

ables are tested. All variables seem to be correlated with the traffic flow, of which some

are positive and others negative. There are also, mostly positive, correlations between

the different POI’s. Too strong correlations could lead to multicollinearity, which could

result in unreliable coefficients of a regression model.

• Because most variables seem to indicate some trend with the flow multivariate regression

is a good method. However, it is important to take multicollinearity into account when

creating the model.

3.4 Visual inspection

Following the pairplot and the aggregated dataframe setup in the sections below, it is

possible to visually inspect if there is a relation between POI neighbour count and the

local measured road flow. The figures out of which conclusions are drawn are presented

in appendix A. An example of a plot is given in figure 7.

• In the figures 21, 20, 18, 7 and 19 (the two digit numbers are given in appendix A) on

the left plot the measured flow of detectors is matched with specific streets in the street

network.
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Figure 7: Flows, and amount of POI’s per edge in Rotterdam

• Similarly, the count of associated POI’s (that are within a range of 250 meters) are plotted

on the right.

• Following the hypothesis, roads with a high flow should have a lower amount of POI’s in

the area.

• In Rotterdam (figure 7) the correlation seems to be less evident. Most high flow roads,

also seem to have a high amount of POI’s associated with it.

• As seen in figure 21 of Frankfurt the correlation seems to be evident. the roads that show

a high traffic flow indeed seem to have less POI’s around them.

• As seen in figure 20 of Hamburg the (visual) correlation seems to be less strong. Most

roads that show up as high traffic flow in the left figure also show up with a high POI-

count. Indicating that perhaps the correlation in Hamburg is not as strong. In the centre

of the map there seems to be some correlation though, with high POI-counts and low

traffic flows.
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• In Munich, figure 18 the correlation seems to be less evident. High flow roads will also

have a higher amount of POI’s assosciated with the the road.

• In Zurich (figure 19, the correlation seems to play effects in the city centre, however

moving to the outer bounds of the city the correlation is less likely.

3.4.1 Visual inspection: Conclusions

• In all of the cities there seems to be some sort of (visual) correlation between the flows in a

street and the POI-counts. Of course, this correlation will vary between cities. However,

in most cities especially the city centre will have more POI’s associated with it, and

evidently these roads also have lower flows.

On the outskirts of the cities, there are roads that have low POI-counts and high flow.

• This makes sense in terms of the hypothesis, as these roads do not have alternative trans-

port options.

• A likely cause is that within a city centre walking or public transport is more feasible and

thus that the local traffic flow is reduced. Part of this could be explained by traffic that

is going into the city centre, increasing the network flow on the outskirts as well.

3.5 Limitations of data and study

3.5.1 Measurement period

• As can be seen in the table 1 in section 3.1, the measurement period varies. In Frankfurt

and Munich they measured just 1 day, where they measured 108 days in Hamburg.

• Depending on the day of the week, there will be more or less flow measured, this will

influence the correlation between the POIs and the measured flow.
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3.5.2 Measurement interval

• A Limitation from the study is the measurement interval. For the sake of simplicity we

chose to compute the detector flow average per day. In the original table the intervals are

between 3 and 5 minutes.

• If the original intervals were used the relation could be stronger since in rush hour a

higher flow would be measured.

3.5.3 Limited number of detectors

• The limited number of detectors is also a limitation. As can be seen in table 1, there’s

a difference in number of detectors. With a limited number of detectors it harder to

demonstrate the relation between flow and POIs.

3.5.4 limited number of POIs

• The number of POIs in the UTD 19 data set is limited.

• If this data would be more extensive the hypothesis could be rejected or confirmed with

more certainty

3.5.5 determination of neighbours

• The neighbours from the streets are determined from a centroid point. The centroid point

in this study is the location of the detector and not the whole road itself.

• This is done for simplicity. But it might influence the relation between the flow on streets

and the POIs in the area.

3.5.6 Determining neighbours on distance isn’t perfect

• Determining the neighbours based on their distance is too, done for simplicity. When

someone is traveling near a POI they don’t necessarily have that POI as destination or

starting point.

18



• This also influences the relation between the flow on a street and the POIs in the area.
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4 Analysis

• Our hypothesis was that when there are many alternative transport options for travelling

by car in the built environment, the flow of cars will be less. This would result in a higher

sustainability score and less CO2-emssions per capita. We argue that this is true for some

alternative transport options, but not for all.

4.1 LISA

• The hypothesis is that the measured flow (average amount of cars per hour) will be lower

for streets that have a lot of alternative transport options close by.

• It is possible that the dependent variable (local measured flow) is spatially correlated.

If the flow is spatially correlated it would mean that some of the locally measured flow

could be explained by the average flow of the neighbours (which are within a radius of

250 meters).

• For network flow spatial correlation would make sense, as if one road is very busy probably

the roads around it will also be very busy (due to the high flow of the initial busy road).

• To analyse this effect and provide a statistical basis, the Moran’s I for each of the cities

was calculated for the variable flow. And as discussed with a distance threshold of 250

meters.

• The analysed roads in Frankfurt are within a relatively small area. Thus with a threshold

of 250 meters there are no islands. Thus there are no detectors that have zero detectors

around in a radius of 250 meters.

• The figure 8 shows I = 0.24, with a significance level of p = 0.01. Therefore there is

spatial correlation.

• The I should be interpreted as follows, if flow is 1 standard deviation higher than average,

the neighbours will be 0.24 standard deviations of flow busier.
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Figure 8: Moran’s I for Frankfurt, with p = 0.01

• On the right side of the figure in Frankfurt the detectors and their quadrant are plotted on

the map. This should be interpreted as follows, red points are in the HH quadrant, these

are High High, the flow of this detector is high and the flows of the neighbours are high,

these roads can be found on the top left of the figure. Some roads do not have significant

spatial correlation, their variance can’t be explained by the flows of their neighbours,

these are marked gray in the figure.

• Similarly, in Hamburg Moran’s I is calculated. In Hamburg, with a range of 250 meters

there are three islands. These islands were removed from the analysis for now, and the

spatial weights recalculated.

• In Hamburg the I = 0.34 with a p = 0.001. The I is slightly higher than in Frankfurt,

which means that the spatial correlation is stronger in Hamburg, a higher amount of

variance is explained by spatial correlation.

• As possible to see in the map on the right, this is likely because detectors are often placed

along the same road. These roads often fall in the same quadrant (for example the line
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of blue detectors that belong to Low-Low). Points seem to be mostly in the high-high or

low-low quadrant.

Figure 9: Moran’s I for Hamburg with p = 0.001

• As seen in the figure 10 the Moran’s I is higher in Munich with an I = 0.7 and a quite

significant values. In Munich there are four islands if the range is set to 250 meters,

these were removed from analysis. Looking at the Moran’s plot it seems that the spatial

correlation is strong in Munich. Similarly as was the conclusion for Hamburg, most points

seem to be placed in either the high-high or low-low groups.
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Figure 10: Moran’s I for Munich with p = 0.001

• In Rotterdam the situation is a little different, with a threshold of 250 meters, there are

two islands removed from the analysis. The I = 0.0956, which is quite low. This can

all be discerned from the Moran plot, the pattern seems less correlated (more random).

However the I is in fact signifcant with p = 0.047. Because of the low I, the amount of

detectors that fall into quadrants is smaller as seen in the sub-figure on the right.
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Figure 11: Moran’s I for Rotterdam with p = 0.047

• In Zurich as seen in the figure 12 especially for the higher flow roads the neighbours also

seem to have a higher flow (from the scatter plot). Again, the p value indicates that the

spatial correlation is significant.
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Figure 12: Moran’s I for Rotterdam with p = 0.001

4.1.1 Conclusion Spatial Correlation

Concluding, the spatial correlation varies between the five cities. However, spatial effects

are significant in all of the cities. Therefore some off the variance of the flows is explained

by the flows of neighbours.

4.2 Spatial linear regression

To understand the relation between the flow and the alternative transport options a

(spatial) regression analysis was conducted. A regression model can help quantify the

relationship between the two. Statistics of the model can help us interpret how correct

the relation is that we’re seeing. The model was build in a iterative way.

4.2.1 Iterations model
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• First iteration of the model: All variables were included, with the city as a dummy vari-

able. This model was significant, but the residuals were tested on spatial auto-correlation

as argued in section 4.1. The full model results can be found in appendix A.2.1. the

Moran’s I. The I = 0.24 with a p = 0.01, thus spatial effects play a significant role and

will be tested in the next iteration

• Second iteration: Spatial lag of the flow was included, full model results are given in

appendix A.2.2.

• A new variable is included: the spatial lag of flow for each of the detectors. This variable

represents the weighted average of neighbouring detector flow.

• Including spatial lag made almost all other predictors non-significant, except for the

variable pedestrian. Therefore, the variance of the flows in the streets is quite accurately

predicted by the weighted average flow of the neighbours around it.

• Third iteration: All non-significant predictors were removed and the log of pedestrian

was taken, since the variable was very skewed.
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4.2.2 Results final model

Figure 13: OLS results

• Interpretation of coefficients:

· Lag flow: This means that if the average flow of the neighbors is 1 unit higher, then the

own flow measured in this detector is 0.76 cars per hour higher.

· Pedestrian: The interpretation of this variable is different, since we took the log of this

variable. For every 1% increase in pedestrian, the flow decreases by about 9 cars per

hour. For x percent increase, the coefficient has to be multiplied by log(1.x). The general

effect is that the flow is lower when it’s close to pedestrian areas, such as shopping streets

or squares.

• Error analysis:
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Figure 14: Linearity test

• The residuals have a widening pattern when plotted against the predicted flows. This

means that there are some predicting variables still missing.

Figure 15: Residuals per city results
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On the test set the following scores were found

· R2-score 3: 0.21776849111321606

· MAE 3:91.28649138599641

· rmse 3: 123.28969991409619

The R2-score is quite low and the Mean Absolute Error and Root Mean Square Error

are quite high, especially since the predicted flow is sometimes more than two times the

actual flow with these errors.

4.2.3 Conclusion regression model

• Based on these results there doesn’t seem to be a strong relation between the alternative

transport options and the mobility flows, since most of them are not significant.

• Only pedestrian was significant. Pedestrian areas are often used for example for shopping

and thus not really offering an alternative travel option. On the other hand it might

suggest that built environments that are made ”walkable” with pedestrian areas and are

less accessible for cars, make people walk, use public transport or go by bike in those

parts of the city.

• The flows are spatially correlated, so there is some spatial relation to why some flows are

higher than others.

• The model doesn’t have a lot of prediction power, the errors are quite high and there

seem to be a lot of variance unexplained.

4.3 PCA

To create a single score for the built environment for each city a principal component

analysis was conducted on the standardized and averaged counts of POI’s per city. This

single score was correlated with the sustainability factor of each city to get an indication

of the relation between the built environment, mobility and sustainability of cities.
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Figure 16: Residuals per city results

• The plot of the correlation between the sustainability factor and the standardized pca

score of the poi counts don’t show a clear correlation.

• The confidence interval is very wide, since there are only five points, the five cities.

• This supports the point that there is not a strong relation between the alternative trans-

port options and car flows, because if there was then there would be a higher sustainability

factor for a city with a higher standardized and averaged poi count.
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Figure 17: Residuals per city results

• The plot of the correlation between the CO2-emission per capita and the standardized

pca score of the poi counts shows a possible positive correlation.

• This indicates that there might still be a relation between the chosen points of interest

and being a sustainable city that has less CO2-emission.

• The confidence interval is very wide, since there are only five points, the five cities. This

is why it can’t be said for certain that the stated correlation is correct.
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5 Conclusion

5.1 Findings

• The knowledge gap addressed was whether the alternative transport options, measured as

points of interest, would result in lower car traffic flows in European cities, measured with

detectors on roads. And whether making changes in this built environment of alternative

transport options could result in a more sustainable city.

• The following research question was defined: What is the correlation between measured

traffic flows and the amount of poi’s related to alternative forms of transport within 250m?

• The regression analysis showed that most counts of points of interest were not significant,

except for pedestrian. The network flow is however spatially correlated with flows from

other detectors in a radius of 250 meters.

• The regression analysis showed that there was little connection between the built envir-

onment in a distance of 250 meters, measured as points of alternative travel options, and

the car flows.

• There was a correlation between the pedestrian areas and the flows. In areas with more

pedestrian areas, the traffic flows are lower.

• There is also some spatial correlation, between the detectors. This is shown in the LISA

analysis (section 4.1) and the spatial lag of flow is significant in the regression. There

were areas with a lot of high values clustered and others with low values clustered. This

could indicate that there is some relation between the location and built environment to

the flows, however it is not well explained by the part of the built environment that we

researched.

• The lack of correlation between the aggregated score of the point of interest per city and

the sustainability factor confirmed the lack of a relation between the alternative transport

options and the car flows.

• The correlation with the CO2-emissions, however, did show a positive correlation. This

would mean that cities with relatively more alternative transport options will result in

less CO2-emissions.
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5.2 Implication and explanation of findings

• The results fill the gap of Wang et al. (2018) that suggested a correlation between the

flow and built environment based on detector data en the close by point of interest for

a big city in China, but couldn’t say whether this correlation would exist in European

cities.

· This correlation does exist in European cities, but not all significant factors of Wang et al.

(2018) were included in this analysis. For example hospitals were not taken into account

in our analysis. We only focused on the alternative transport as points of interest.

· Adding hospitals and other points of interest could help with the unexplained variance in

our regression model.

• Research suggests that to make a city walkable, it needs to have a good pedestrian

network, but also it needs to be safe and have plentiful destinations(R. Rafiemanzelat,

M. Emadi, A. Kamali, 2017). According to this research, a more walkable city results in

a more sustainable city.

· The correlation that is found between the pedestrian areas and the flows on streets, seem

to suggest that people choose to walk when there are many pedestrian areas.

· These areas seem to be located in centres of cities, where it is often safe to walk and

which has plentiful destinations.

· An alternative explanation could be that these parts of the city are made less accessible

to cars. Cars are diverted around the center instead of going through the center to

reach their destination. This could indicate that even though the flows are lower around

pedestrian areas, the total flows of the city do not decrease. Maybe even increase, since

cars cannot take the most direct route. This could be an interesting aspect for future

research.

• Other research suggested that the presence of more high quality bicycle lanes, footpaths

and public transport access points, make these forms of transport more attractive (Parker

et al.,2013;Murray et al., 1998), which could reduce the car traffic flows.
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· Our analysis suggests that there is no predictive relation between the amount of bicycle

lanes and public transport stations and the traffic flows, even though this was suggested

in literature.

· This could be because we only looked at detectors and the points of interest within 250

meters distance and not at the routes people were taking. There still might be a relation

between the alternative travel options, such as public transport and by bike, for routes

and the traffic flows.

· That way you look at point of destination instead of nearby points.

• As mentioned earlier, in the past there has been a lot of research on the relation between

sustainable transport and the built environment (Borrego et al., 2006;Banister, 2005;Ban-

ister, 2011;Ewing and Handy, 2009). Those studies focused primarily on determining the

specific characteristics of a city or measures that make alternative forms of transport more

attractive choices. Most of them did not study the correlation between measured traffic

flows and the existing infrastructures for alternative forms transport nearby. Only (Yang

and Diez-Roux, 2012) used a similar method for a city in China.

• In this study, weak but significant, correlations were found between traffic flows and the

presence of POI’s. Those findings could help in the decision making process to select

promising options to reduce traffic flows in the city by expanding the infrastructures for

alternative transport. However, additional research in which more European cities are

included is necessary to do any detailed recommendations.

5.3 Final conclusion

• Creating sustainable cities is important to tackle the global warming. To make cities more

sustainable, people have to make more sustainable travel choices, since traffic emissions

contribute up to 91% of total emissions in European city centres (Rivas et al., 2020).

• One of the causes of choice of travel mode, might be in the built environment (Ewing

and Handy, 2009). Stimulating people to use more sustainable travel modes, than by car

could be done through changing the built environment.
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• Understanding how offering alternative travel options relate to the flow of cars helps to

guide policy on changing the built environment to reduce traffic flows.

• From the analysis, it can be concluded that creating more pedestrian areas in a city, that

have many destinations at a walking distance could result in a reduce in traffic flow.

• However, these relations are not very strong. There are probably other aspects of the

built environment that could explain this relation for areas with high flows and areas

with low flows better.

• In the current analysis only the counts of alternative transport options are used as a pre-

dicting variable for the network flow. Perhaps the relation between amount of alternative

transport options and the choice of the mode of transportation would reflect the reduction

in total traffic in the city better. This would be an interesting approach for a continuing

research.

• This analysis contributes only a small part of creating a better understanding of the built

environment and the impact thereof on traffic flows. A lot of research still remains to be

done.
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Appendices

A Appendix A

A.1 Visual inspection of correlation between flow and POI neigh-

bours

Figure 18: Flows, and amount of POI’s per edge in Munich
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Figure 19: Flows, and amount of POI’s per edge in Zurich

Figure 21: Flows, and amount of POI’s per edge in Frankfurt
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Figure 20: Flows, and amount of POI’s per edge in Hamburg

A.2 Appendix B

A.2.1 First model iteration
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A.2.2 Second Model iteration
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