CURVE-FITTNG METHODS
AND THE MESSAGES THEY SEND

Spatial Data Science

Data Engineering

(EPA122A)
Lecture 4
 UITH MATH."

"I NEED TO CONNECT THESE TUO LINES, BUT MY FIRST IDEA DIDN'T HAVE ENOUGH MATH."

IM SOPHISTCATED, NOT LIIE THOSE BUMBUING POCYNOMIAL PEOPLE."

ISTEN, SCIENCE IS HARD BUT IM A SERIOUS PERSON DOING MY BEST.
ADHOC
FLTER
"I HAD AN IDEA FOR HOW
TO CLEAN UP THE DATA.
WHAT DO YOU THINK?"

"IM MAKing A SCATTER PLOT BUT I DON'T WANT TO."

"I HAVE A THEORY, AND THIS IS THE ONCY DATA I COULD FIND."
 THE- WAIT NO NO DONT EXTEND IT AAAAAA!!"

Peer Feedback

- Please be respectful
- If you got a peer review, you ought to give one too
- Provide detailed comments and constructive feedback for improvement - follow DOS and DONTS from Lecture 1.
- Assignment 1 is a low-hanging fruit, basically all code is given in lab-02.

... and after peer review and revision

REDPEN/BLACKPEN hHtp://redpenblackpen.jasonya.com

Last Time

- Types of Data
- Grammar
- EDA without Pandas
- EDA with Pandas
- Data Concerns

Today

- Descriptive Statistics
- Break
- Data Transformations

TuDefte

Descriptive Statistics

Basics of Sampling

Population versus sample:

- A population is the entire set of objects or events under study. Population can be hypothetical "all students" or all students in this class.
- A sample is a "representative" subset of the objects or events under study. Needed because it's impossible or intractable to obtain or compute with population data.
Biases in samples:
- Selection bias: some subjects or records are more likely to be selected
- Volunteer/nonresponse bias: subjects or records who are not easily available are not represented
Examples?

Sample mean

- The mean of a set of n observations of a variable is denoted \bar{x} and is defined as:

$$
\bar{x}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- The mean describes what a "typical" sample value looks like, or where is the "center" of the distribution of the data.
- Important : there is always uncertainty involved when calculating a sample mean to estimate a population mean.

Sample median

- The median of a set of n number of observations in a sample, ordered by value, of a variable is defined by

$$
\text { Median }= \begin{cases}x_{(n+1) / 2} & \text { if } n \text { is odd } \\ \frac{x_{n / 2}+x_{(n+1) / 2}}{2} & \text { if } n \text { is even }\end{cases}
$$

- Example (already in order):

Ages: 17, 19, 21, 22, 23, 23, 23, 38
Median $=(22+23) / 2=22.5$

- The median also describes what a typical observation looks like, or where is the center of the distribution of the sample of observations.

Mean vs Median

The mean is sensitive to extreme values (outliers)

Mean, median, and skewness

The mean is sensitive to outliers:

The above distribution is called right-skewed since the mean is greater than the median.
Note: skewness often "follows the longer tail".

Regarding Categorical Variables...

For categorical variables, neither mean or median make sense. Why?

The mode might be a better way to find the most "representative" value.

Measures of Spread: Range

The spread of a sample of observations measures how well the mean or median describes the sample.

One way to measure spread of a sample of observations is via the range.

$$
\text { Range }(R)=(\text { Max }) \text { imum Value - (Min)imum Value }
$$

Measures ofspread: Tariance

- The (sample) variance, denoted s^{2}, measures how much on average the sample values deviate from the mean:

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left|x_{i}-\bar{x}\right|^{2}
$$

- Note: the term $\left|x_{i}-\bar{x}\right|$ measures the amount by which each x_{i} deviates from the mean \bar{x}. Squaring these deviations means that s^{2} is sensitive to extreme values (outliers).
- Note: s^{2} doesn't have the same units as the x_{i} :(
- What does a variance of 1,008 mean? Or 0.0001?

Measures of Spread: Standard Deviation

The (sample) standard deviation, denoted s (or sigma), is the square root of the variance

$$
s=\sqrt{s^{2}}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left|x_{i}-\bar{x}\right|^{2}}
$$

Note: s does have the same units as the x_{i}. Phew!

Break

CHILL

WALK

COFFEE OR TEA

MAKE FRIENDS

TuDefte

Data Science Process	Inclusion Who is (not) included in the data?	Inequality What role does inequality play in data science methods?	Participation Who is (not) involved in the data science process?	Power How does the data reflect existing power dynamics?	Positionality What is your own positionality with the research?
Transform Data Completeness , Missing data, Consistency, Pluralism \& Accuracy of collected data	Do not only consider what data is missing from the dataset, but also whose data is missing (diversity in variables, but also diversity in sources).	Are you erasing or magnifying someone's perspective by cleaning the data (aggregating, replacing missing value, or slicing)? (Boyd, 2021a). Did the (joint) distribution of the data change after cleaning? If so, explore the impacts of a different cleaning approach.	Ensure transparency of data cleaning choices. Collaboratively discuss the impact of these decisions and alternative ways of transforming the data.	Are the data cleaning techniques (normalization, replacement of missing values) reinforcing a dominant framing of what the data should show? (Boyd, 2021a).	Critically reflect on your data cleaning choices? 1. Why are you using these specific data cleaning methods? 2. How are you silencing certain voices in your data cleaning process? And why? 3. How are you amplifying certain voices in your data cleaning process? And why?

Data Transformations
 Data Transformations

Data Transformations

\pm
 $=$

(

Data Transformations

-

\qquad
\qquad
 \qquad
\qquad

Why Transform Data

Dilbert © 2021, Andrews McMeel Syndication

TUDelft=
Example of Access

City 1	$A 1$
\vdots	
\vdots	

Can we compare these cities?

TUDelft
feature engincering

Eg.
Smart -card
Features (measurable)
CHECK-IN LOGS

* Alternative: trips/station
$\mathrm{Fl} \rightarrow$ trips/month
$\mathrm{F2} \rightarrow$ class
$\mathrm{FH}_{3} \rightarrow$ Arg. time of trip
Fy \rightarrow total price

TUDelft

$1-500$ trips/month $200-2000 \mathrm{cHF} /$ mouth

Why Scaling

- Comparison of groups of Object

Example: Access to infrastructure in Cities

- ML algorithms use Euclidean distance (higher magnitude will weigh more) advanced topics will be explored in week 6-7

Dealing with Missing Data

- If your data is big, sacrifice examples with missing features
- Data Imputation techniques
- Use average of the feature for replacing a missing value

$$
x_{i} \leftarrow \bar{x}
$$

- Advanced: regression modelling to estimate missing values

Normalisation

- Transformation of data to a different range [a-b]
- Normally [0-1]
- Create new variables from the transformations.

$$
\begin{aligned}
& \text { in feature }
\end{aligned}
$$

TUDelft

Standardisation

or, Z-score normalisation

- Transformation of data to a different range that is normally distributed with mean 0 and standard deviation 1.

$$
N(\mu=0, \sigma=1)
$$

TUDelft:

Use S (All others N)

- Features are normally distributed (not normalisation)

- Many outliers (normalisation squashes them in a limited range)
- All unsupervised learning algorithms, like clustering or dimensionality reduction

For next class..

Finish Labs to practice programming

Complete Homework for more practice

Check Assignment contents and due date

See "To do before class" for next lecture (~ 1 hour of self-study)

