Spatial Data Science

Data Engineering

(EPA122A) Lecture 4

Trivik Verma

Peer Feedback

- Please be respectful
- If you got a peer review, you ought to give one too
- Provide detailed comments

 and constructive feedback for
 improvement follow DOS and
 DONTS from Lecture 1.
- Assignment 1 is a low-hanging fruit, basically all code is given in lab-02.

Your manuscript as submitted

Comic by: <u>Redpen/Blackpen</u>

Last Time

- Types of Data
- Grammar
- EDA without Pandas
- EDA with Pandas
- Data Concerns

Today

- Descriptive Statistics
- Break
- Data Transformations

Ask a Question How were the data **sampled**? Get the data Which data are **relevant**? Are there **privacy** issues? **Plot** the data. Explore the data Are there **anomalies**? Are there **patterns**? Model the data Communicate results

Descriptive Statistics

Population versus sample:

- A population is the entire set of objects or events under study. Population can be hypothetical "all students" or all students in this class.
- A **sample** is a "representative" subset of the objects or events under study. Needed because it's impossible or intractable to obtain or compute with population data.

Biases in samples:

- Selection bias: some subjects or records are more likely to be selected
- Volunteer/nonresponse bias: subjects or records who are not easily available are not represented

Examples?

Sample mean

The mean of a set of n observations of a variable is denoted x
 and is defined as:

- The mean describes what a "typical" sample value looks like, or where is the "center" of the distribution of the data.
- **Important** : there is always uncertainty involved when calculating a sample mean to estimate a population mean.

Sample median

• The **median** of a set of n number of observations in a sample, ordered by value, of a variable is defined by

$$\mathsf{Median} = \left\{ egin{array}{cc} x_{(n+1)/2} & ext{if n is odd} \ rac{x_{n/2} + x_{(n+1)/2}}{2} & ext{if n is even} \end{array}
ight.$$

• Example (already in order):

TUDelft

Ages: 17, 19, 21, <u>22, 23</u>, 23, 23, 38

Median = (22+23)/2 = 22.5

• The median also describes what a typical observation looks like, or where is the center of the distribution of the sample of observations.

Mean vs Median

The mean is sensitive to extreme values (outliers)

Mean, median, and skewness

The above distribution is called **right-skewed** since the mean is greater than the median.

Note: skewness often "follows the longer tail".

Regarding Categorical Variables...

For categorical variables, neither mean or median make sense. Why?

The mode might be a better way to find the most "representative" value.

Material provided by the Data Science course at Harvard University

Measures of Spread: Range

The spread of a sample of observations measures how well the mean or median describes the sample.

One way to measure spread of a sample of observations is via the **range**.

Range (R) = (Max)imum Value - (Min)imum Value

Measures of Spread: Variance

• The (sample) **variance**, denoted *s*², measures how much on average the sample values deviate from the mean:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} |x_{i} - \bar{x}|^{2}$$

- Note: the term $|x_i \bar{x}|$ measures the amount by which each x_i deviates from the mean \bar{x} . Squaring these deviations means that s^2 is sensitive to extreme values (outliers).
- Note: s^2 doesn't have the same units as the x_i :(

TUDelft

• What does a variance of 1,008 mean? Or 0.0001?

Measures of Spread: Standard Deviation

The (sample) **standard deviation**, denoted *s* (*or sigma*), is the square root of the variance

$$s = \sqrt{s^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} |x_i - \bar{x}|^2}$$

Note: *s* does have the same units as the x_i . Phew!

fuDelft

Break

CHILL

WALK

(?)

COFFEE OR TEA

MAKE FRIENDS

Ask a Question How were the data **sampled**? Get the data Which data are **relevant**? Are there **privacy** issues? **Plot** the data. Explore the data Are there **anomalies**? Are there **patterns**? Model the data Communicate results

Data Science Process	Inclusion Who is (not) included in the data?	Inequality What role does inequality play in data science methods?	Participation Who is (not) involved in the data science process?	Power How does the data reflect existing power dynamics?	Positionality What is your own positionality with the research?
Transform Data Completeness , Missing data, Consistency, Pluralism & Accuracy of collected data	Do not only consider what data is missing from the dataset, but also whose data is missing (diversity in variables, but also diversity in sources).	Are you erasing or magnifying someone's perspective by cleaning the data (aggregating, replacing missing value, or slicing)? (Boyd, 2021a). Did the (joint) distribution of the data change after cleaning? If so, explore the impacts of a different cleaning approach.	Ensure transparency of data cleaning choices. Collaboratively discuss the impact of these decisions and alternative ways of transforming the data.	Are the data cleaning techniques (normalization, replacement of missing values) reinforcing a dominant framing of what the data should show? (Boyd, 2021a).	 Critically reflect on your data cleaning choices? 1. Why are you using these specific data cleaning methods? 2. How are you silencing certain voices in your data cleaning process? And why? 3. How are you amplifying certain voices in your data cleaning process? And why?

Data Transformations

Why Transform Data

Dilbert © 2021, Andrews McMeel Syndication

Example of Access Most blocks Most blocks ~200M ~100m City 1 A1 / _ / PDF(A) A2 Tity 2 Access A (meters) Can we compare these cifies?

feature engineering

Why Scaling

- Comparison of groups of Object
 Example: Access to infrastructure in Cities
- ML algorithms use Euclidean distance (higher magnitude will weigh more) –

advanced topics will be explored in week 6-7

Dealing with Missing Data

- If your data is big, sacrifice examples with missing features
- Data Imputation techniques

• Use average of the feature for replacing a missing value

• Advanced: regression modelling to estimate missing values

Normalisation

- Transformation of data to a different range [a b]
- Normally [0-1]
- Create new variables from the transformations.

Rescaled
value

$$X_{i} = \frac{X_{i} - \min(x)}{\max(x) - \min(x)} \times [b - a] + a$$

 $\max(x) - \min(x)$
 M_{in} value
in feature
 M_{in} value

Nicoletti, L., Sireno, M., & Verma, T. (2021). Unequal Access to Urban Infrastructure in Cities across the World. In Preparation.

Standardisation or, Z-scor normalisation

• Transformation of data to a different range that is normally distributed with mean 0 and standard deviation 1.

$$N(\mu = 0, \sigma = 1)$$

$$X_{i}^{*} = X_{i}^{*} - \mu_{i}^{*}$$

Use S (All others N)

Features are normally distributed (not normalisation)

Bell/Normal Iganssian

- Many outliers (normalisation squashes them in a limited range)
- All unsupervised learning algorithms, like clustering or dimensionality reduction

For next class..

